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Abstract
Researchers and software developers require effective performance
evaluation. Researchers must evaluate optimizations or measure
overhead. Software developers use automatic performance regres-
sion tests to discover when changes improve or degrade performance.
The standard methodology is to compare execution times before and
after applying changes.

Unfortunately, modern architectural features make this approach
unsound. Statistically sound evaluation requires multiple samples
to test whether one can or cannot (with high confidence) reject the
null hypothesis that results are the same before and after. However,
caches and branch predictors make performance dependent on
machine-specific parameters and the exact layout of code, stack
frames, and heap objects. A single binary constitutes just one sample
from the space of program layouts, regardless of the number of runs.
Since compiler optimizations and code changes also alter layout, it
is currently impossible to distinguish the impact of an optimization
from that of its layout effects.

This paper presents STABILIZER, a system that enables the use of
the powerful statistical techniques required for sound performance
evaluation on modern architectures. STABILIZER forces executions
to sample the space of memory configurations by repeatedly re-
randomizing layouts of code, stack, and heap objects at runtime.
STABILIZER thus makes it possible to control for layout effects.
Re-randomization also ensures that layout effects follow a Gaussian
distribution, enabling the use of statistical tests like ANOVA. We
demonstrate STABILIZER’s efficiency (< 7% median overhead) and
its effectiveness by evaluating the impact of LLVM’s optimizations
on the SPEC CPU2006 benchmark suite. We find that, while -O2
has a significant impact relative to -O1, the performance impact of
-O3 over -O2 optimizations is indistinguishable from random noise.

Categories and Subject Descriptors C.4 [Performance of Sys-
tems]; D.2.0 [Software Engineering]: General; D.3.4 [Program-
ming Languages]: Compilers

Keywords Randomization, Measurement Bias, Performance Eval-
uation
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1. Introduction
The task of performance evaluation forms a key part of both sys-
tems research and the software development process. Researchers
working on systems ranging from compiler optimizations and run-
time systems to code transformation frameworks and bug detectors
must measure their effect, evaluating how much they improve per-
formance or how much overhead they impose [7, 8]. Software devel-
opers need to ensure that new or modified code either in fact yields
the desired performance improvement, or at least does not cause a
performance regression (that is, making the system run slower). For
large systems in both the open-source community (e.g., Firefox and
Chromium) and in industry, automatic performance regression tests
are now a standard part of the build or release process [25, 28].

In both settings, performance evaluation typically proceeds by
testing the performance of the actual application in a set of scenarios,
or a range of benchmarks, both before and after applying changes or
in the absence and presence of a new optimization, runtime system,
etc.

In addition to measuring effect size (here, the magnitude of
change in performance), a statistically sound evaluation must test
whether it is possible with a high degree of confidence to reject the
null hypothesis: that the performance of the new version is indistin-
guishable from the old. To show that a performance optimization is
statistically significant, we need to reject the null hypothesis with
high confidence (and show that the direction of improvement is pos-
itive). Conversely, we aim to show that it is not possible to reject the
null hypothesis when we are testing for a performance regression.

Unfortunately, even when using current best practices (large
numbers of runs and a quiescent system), the conventional approach
is unsound. The problem is due to the interaction between software
and modern architectural features, especially caches and branch
predictors. These features are sensitive to the addresses of the objects
they manage. Because of the significant performance penalties
imposed by cache misses or branch mispredictions (e.g., due to
aliasing), their reliance on addresses makes software exquisitely
sensitive to memory layout. Small changes to code, such as adding or
removing a stack variable, or changing the order of heap allocations,
can have a ripple effect that alters the placement of every other
function, stack frame, and heap object.

The impact of these layout changes is unpredictable and sub-
stantial: Mytkowicz et al. show that just changing the size of envi-
ronment variables can trigger performance degradation as high as
300% [22]; we find that simply changing the link order of object
files can cause performance to decrease by as much as 57%.

Failure to control for layout is a form of measurement bias:
a systematic error due to uncontrolled factors. All executions
constitute just one sample from the vast space of possible memory
layouts. This limited sampling makes statistical tests inapplicable,
since they depend on multiple samples over a space, often with a
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known distribution. As a result, it is currently not possible to test
whether a code modification is the direct cause of any observed
performance change, or if it is due to incidental effects like a
different code, stack, or heap layout.

Contributions
This paper presents STABILIZER, a system that enables statistically
sound performance analysis of software on modern architectures.
To our knowledge, STABILIZER is the first system of its kind.

STABILIZER forces executions to sample over the space of all
memory configurations by efficiently and repeatedly randomizing
the placement of code, stack, and heap objects at runtime. We show
analytically and empirically that STABILIZER’s use of randomiza-
tion makes program execution independent of the execution en-
vironment, and thus eliminates this source of measurement bias.
Re-randomization goes one step further: it causes the performance
impact of layout effects to follow a Gaussian (normal) distribution,
by virtue of the Central Limit Theorem. In many cases, layout ef-
fects dwarf all other sources of execution time variance [22]. As a
result, STABILIZER often leads to execution times that are normally
distributed.

By generating execution times with Gaussian distributions, STA-
BILIZER enables statistically sound performance analysis via para-
metric statistical tests like ANOVA [11]. STABILIZER thus provides
a push-button solution that allows developers and researchers to
answer the question: does a given change to a program affect its
performance, or is this effect indistinguishable from noise?

We demonstrate STABILIZER’s efficiency (< 7% median over-
head) and its effectiveness by evaluating the impact of LLVM’s
optimizations on the SPEC CPU2006 benchmark suite. Across the
SPEC CPU2006 benchmark suite, we find that the -O3 compiler
switch (which includes argument promotion, dead global elimina-
tion, global common subexpression elimination, and scalar replace-
ment of aggregates) does not yield statistically significant improve-
ments over -O2. In other words, the effect of -O3 versus -O2 is
indistinguishable from random noise.

We note in passing that STABILIZER’s low overhead means that it
could be used at deployment time to reduce the risk of performance
outliers, although we do not explore that use case here. Intuitively,
STABILIZER makes it unlikely that object and code layouts will be
especially “lucky” or “unlucky.” By periodically re-randomizing,
STABILIZER limits the contribution of each layout to total execution
time.

Outline
The remainder of this paper is organized as follows. Section 2
provides an overview of STABILIZER’s operation and statistical
properties. Section 3 describes the implementation of STABILIZER’s
compiler and runtime components, and Section 4 gives an analysis of
STABILIZER’s statistical properties. Section 5 demonstrates STABI-
LIZER’s avoidance of measurement bias, and Section 6 demonstrates
the use of STABILIZER to evaluate the effectiveness of LLVM’s stan-
dard optimizations. Section 7 discusses related work. Finally, Sec-
tion 8 presents planned future directions and Section 9 concludes.

2. STABILIZER Overview
This section provides an overview of STABILIZER’s operation,
and how it provides properties that enable statistically rigorous
performance evaluation.

2.1 Comprehensive Layout Randomization
STABILIZER dynamically randomizes program layout to ensure
it is independent of changes to code, compilation, or execution
environment. STABILIZER performs extensive randomization: it

dynamically randomizes the placement of a program’s functions,
stack frames, and heap objects. Code is randomized at a per-function
granularity, and each function executes on a randomly placed stack
frame. STABILIZER also periodically re-randomizes the placement
of functions and stack frames during execution.

2.2 Normally Distributed Execution Time
When a program is run with STABILIZER, the effect of memory lay-
out on performance follows a normal distribution because of layout
re-randomization. Layout effects make a substantial contribution to
a program’s execution. In the absence of other large sources of mea-
surement bias, STABILIZER causes programs to run with normally
distribution execution times.

At a high level, STABILIZER’s re-randomization strategy induces
normally distributed executions as follows: Each random layout
contributes a small fraction of total execution time. Total execution
time, the sum of runtimes with each random layout, is proportional
to the mean of sampled layouts. The Central Limit Theorem states
that “the mean of a sufficiently large number of independent random
variables . . . will be approximately normally distributed” [11]. With
a sufficient number of randomizations (30 is typical), and no other
significant sources of measurement bias, execution time will follow
a Gaussian distribution. Section 4 provides a more detailed analysis
of STABILIZER’s effect on execution time distributions.

2.3 Sound Performance Analysis
Normally distributed execution times allow researchers to evaluate
performance using parametric hypothesis tests, which provide
greater statistical power by leveraging the properties of a known
distribution (typically the normal distribution). Statistical power
is the probability of correctly rejecting a false null hypothesis.
Parametric tests typically have greater power than non-parametric
tests, which make no assumptions about distribution. For our
purposes, the null hypothesis is that a change had no impact. Failure
to reject the null hypothesis suggests that more samples (benchmarks
or runs) may be required to reach confidence, or that the change had
no impact. Powerful parametric tests can correctly reject a false null
hypothesis—that is, confirm that a change did have an impact—with
fewer samples than non-parametric tests.

2.4 Evaluating Code Modifications
To test the effectiveness of any change (known in statistical parlance
as a treatment), a researcher or developer runs a program with
STABILIZER, both with and without the change. Each run is a sample
from the treatment’s population: the theoretical distribution from
which samples are drawn. Given that execution times are drawn
from a normally distributed population, we can apply the Student’s
t-test [11] to calculate the significance of the treatment.

The null hypothesis for the t-test is that the difference in means of
the source distributions is zero. The t-test’s result (its p-value) tells us
the probability of observing the measured difference between sample
means, assuming both sets of samples come from the same source
distribution. If the p-value is below a threshold α (typically 5%), the
null hypothesis is rejected; that is, the two source distributions have
different means. The parameter α is the probability of committing a
type-I error: erroneously rejecting a true null hypothesis.

It is important to note that the t-test can detect arbitrarily small
differences in the means of two populations (given a sufficient
number of samples) regardless of the value of α. The difference in
means does not need to be 5% to reach significance with α = 0.05.
Similarly, if STABILIZER adds 4.8% overhead to a program, this
does not prevent the t-test from detecting differences in means that
are smaller than 4.8%.
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2.5 Evaluating Compiler and Runtime Optimizations
To evaluate a compiler or runtime system change, we instead use a
more general technique: analysis of variance (ANOVA). ANOVA
takes as input a set of results for each combination of benchmark
and treatment, and partitions the total variance into components:
the effect of random variations between runs, differences between
benchmarks, and the collective impact of each treatment across all
benchmarks [11]. ANOVA is a generalized form of the t-test that is
less likely to commit type I errors (rejecting a true null hypothesis)
than running many independent t-tests. Section 6 presents the use of
STABILIZER and ANOVA to evaluate the effectiveness of compiler
optimizations in LLVM.

Evaluating Layout Optimizations. All of STABILIZER’s random-
izations (code, stack, and heap) can be enabled independently. This
independence makes it possible to evaluate optimizations that tar-
get memory layout. For example, to test an optimization for stack
layouts, STABILIZER can be run with only code and heap randomiza-
tion enabled. These randomizations ensure that incidental changes,
such as code to pad the stack or to allocate large objects on the heap,
will not affect the layout of code or heap memory. The developer
can then be confident that any observed change in performance is
the result of the stack optimization and not its secondary effects on
layout.

3. STABILIZER Implementation
STABILIZER uses a compiler transformation and runtime library
to randomize program layout. STABILIZER performs its transfor-
mations in an optimization pass run by the LLVM compiler [17].
STABILIZER’s compiler transformation inserts the necessary opera-
tions to move the stack, redirects heap operations to the randomized
heap, and modifies functions to be independently relocatable. STA-
BILIZER’s runtime library exposes an API for the randomized heap,
relocates functions on-demand, generates random padding for the
stack, and re-randomizes both code and stack at regular intervals.

3.1 Building Programs with Stabilizer
When building a program with STABILIZER, each source file is first
compiled to LLVM bytecode. STABILIZER builds Fortran programs
with gfortran and the dragonegg GCC plugin, which generates
LLVM bytecode from the GCC front-end [27]. C and C++ programs
can be built either with gcc and dragonegg, or LLVM’s clang
front-end [26].

Shuffle Layer

Base 
Allocator

rng

free

free

rng

malloc

malloc

Figure 1. STABILIZER efficiently randomizes the heap by wrapping a
deterministic base allocator in a shuffling layer. At startup, the layer is filled
with objects from the base heap. The malloc function generates a random
index, removes the indexed object from the shuffling layer, and replaces it
with a new one from the base heap. Similarly, the free function generates
a random index, frees the indexed object to the base heap, and places the
newly freed object in its place.

clang

main.bc

libstabilizer

opt
Stabilizer Pass

a.out

main.c foo.f

gfortran
dragonegg

foo.bc

clang

main.o foo.o

ld

Figure 2. The procedure for building a program with STABILIZER. This
process is automated by the szc compiler driver.

The compilation and transformation process is shown in Figure 2.
This procedure is completely automated by STABILIZER’s compiler
driver (szc), which is compatible with the common clang and gcc
command-line options. Programs can easily be built and evaluated
with STABILIZER by substituting szc for the default compiler/linker
and enabling randomizations with additional flags.

3.2 Heap Randomization
STABILIZER uses a power of two, size-segregated allocator as the
base for its heap [33]. Optionally, STABILIZER can be configured
to use TLSF (two-level segregated fits) as its base allocator [19].
STABILIZER was originally implemented with the DieHard alloca-
tor [3, 24]. DieHard is a bitmap-based randomized allocator with
power-of-two size classes. Unlike conventional allocators, DieHard
does not use recently-freed memory for subsequent allocations. This
lack of reuse and the added TLB pressure from the large virtual
address space can lead to very high overhead.

While STABILIZER’s base allocators are more efficient than
DieHard, they are not fully randomized. STABILIZER randomizes
the heap by wrapping its base allocator in a shuffling layer built
with HeapLayers [4]. The shuffling layer consists of a size N
array of pointers for each size class. The array for each size class
is initialized with a fill: N calls to Base::malloc are issued to
fill the array, then the array is shuffled using the Fisher-Yates
shuffle [10]. Every call to Shuffle::malloc allocates a new object
p from Base::malloc, generates a random index i in the range
[0, N), swaps p with array[i], and returns the swapped pointer.
Shuffle::free works in much the same way: a random index i
is generated, the freed pointer is swapped with array[i], and the
swapped pointer is passed to Base::free. The process for malloc
and free is equivalent to one iteration of the inside-out Fisher-Yates
shuffle. Figure 1 illustrates this procedure. STABILIZER uses the
Marsaglia pseudo-random number generator from DieHard [3, 18].

The shuffled heap parameter N must be large enough to create
sufficient randomization, but values that are too large will increase
overhead with no added benefit. It is only necessary to randomize
the index bits of heap object addresses. Randomness in lower-order
bits will lead to misaligned allocations, and randomized higher
order bits impose additional pressure on the TLB. NIST provides a
standard statistical test suite for evaluation pseudorandom number
generators [2]. We test the randomness of values returned by libc’s
lrand48 function, addresses returned by the DieHard allocator, and
the shuffled heap for a range of values of N . Only the index bits
(bits 6-17 on the Core2 architecture) were used. Bits used by branch
predictors differ significantly across architectures, but are typically
low-order bits generally in the same range as cache index bits.
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Figure 3. (a) During initialization, STABILIZER places a trap instruction at the beginning of each function. When a trapped function is called, it is relocated
on demand. (b) Each randomized function has an adjacent relocation table, populated with pointers to all referenced globals and functions. (c) A timer triggers
periodic re-randomizations (every 500ms by default). In the timer signal handler, STABILIZER places traps at the beginning of every randomized function. (d)
Once a trapped function is called, STABILIZER walks the stack, marks all functions with return addresses on the stack, and frees the rest (baz′ is freed in the
example). Any remaining functions (foo′) will be freed after a future re-randomization once they are no longer on the stack. Future calls to foo will be directed
to a new, randomly located version (foo′′).

The lrand48 function passes six tests for randomness (Fre-
quency, BlockFrequency, CumulativeSums, Runs, LongestRun, and
FFT) with > 95% confidence, failing only the Rank test. DieHard
passes these same six tests. STABILIZER’s randomized heap passes
the same tests with the shuffling parameter N = 256. STABILIZER

uses this heap configuration to randomly allocate memory for both
heap objects and functions.

3.3 Code Randomization
STABILIZER randomizes code at function granularity. Every trans-
formed function has a relocation table (see Figure 3(b)), which is
placed immediately following the code for the function. Functions
are placed randomly in memory using a separate randomized heap
that allocates executable memory.

Relocation tables are not present in a binary built with STABI-
LIZER. Instead, they are created at runtime immediately following
each randomly located function. The sizes of functions are not
available in the program’s symbol table, so the address of the next
function is used to determine the function’s endpoint. A function
refers to its adjacent relocation table with a PC-relative offset. This
approach means that two randomly located copies of the same func-
tion do not share a relocation table.

Some constant floating point operands are converted to global
variable references during code generation. STABILIZER converts
all non-zero floating point constants to global variables in the IR so
accesses can be made indirect through the relocation table.

Operations that convert between floating-point and integers do
not contain constant operands, but still generate implicit global
references during code generation. STABILIZER cannot rewrite these
references. Instead, STABILIZER adds functions to each module to
perform int-to-float and float-to-int conversions, and replaces the
LLVM fptosi, fptoui, sitofp, and uitofp instructions with
calls to these conversion functions. The conversion functions are the
only code that STABILIZER cannot safely relocate.

Finally, STABILIZER renames the main function. The STABI-
LIZER runtime library defines its own main function, which initial-
izes runtime support for code randomization before executing any
randomized code.

Initialization. At compile time, STABILIZER replaces the mod-
ule’s libc constructors with its own constructor function. At startup,
this constructor registers the module’s functions and any construc-

tors from the original program. Execution of the program’s construc-
tors is delayed until after initialization.

The main function, defined in STABILIZER’s runtime, overwrites
the beginning of every relocatable function with a software break-
point (the int 3 x86 instruction, or 0xCC in hex); see Figure 3(a).
A pointer to the function’s runtime object is placed immediately
after the trap to allow for immediate relocation (not shown).

Relocation. When a trapped function is executed, the STABILIZER

runtime receives a SIGTRAP signal and relocates the function (Fig-
ure 3(b)). Functions are relocated in three stages: first, STABILIZER

requests a sufficiently large block of memory from the code heap
and copies the function body to this location. Next, the function’s
relocation table is constructed next to the new function location.
STABILIZER overwrites the beginning of the function’s original
base address with a static jump to the relocated function (replacing
the trap instruction). Finally, STABILIZER adds the function to the
set of “live” functions.

Re-randomization. STABILIZER re-randomizes functions at regu-
lar time intervals (500ms by default). When the re-randomization
timer expires, the STABILIZER runtime places a trap instruction at
the beginning of every live function and resumes execution (Fig-
ure 3(c)). Re-randomization occurs when the next trap is executed.
This delay ensures that re-randomization will not be performed
during the execution of non-reentrant code.

STABILIZER uses a simple garbage collector to reclaim memory
used by randomized functions. First, STABILIZER adds the memory
used by each live functions to a set called the “pile.” STABILIZER

then walks the stack. Every object on the pile pointed to by a return
address on the stack is marked. All unmarked objects on the pile are
freed to the code heap.

3.4 Stack Randomization.
STABILIZER randomizes the stack by adding a random amount of
space (up to 4096 bytes) between each stack frame. STABILIZER’s
compiler pass creates a 256 byte stack pad table and a one-byte
stack pad index for each function. On entry, the function loads the
index-th byte, increments the index, and multiplies the byte by 16
(the required stack alignment on x86 64). STABILIZER moves the
stack down by this amount prior to each function call, and restores
the stack after the call returns.

The STABILIZER runtime fills every function’s stack pad table
with random bytes during each re-randomization. The stack pad
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Figure 6. Overhead of STABILIZER relative to runs with randomized link order (lower is better). With all randomizations enabled, STABILIZER adds a median
overhead of 6.7%, and below 40% for all benchmarks.

for x86 64. All programs are built using gcc version 4.6.3 as a
front-end, with dragonegg and LLVM version 3.1.

Benchmarks. We evaluate STABILIZER across all C benchmarks
in the SPEC CPU2006 benchmark suite. The C++ benchmarks
omnetpp, xalancbmk, dealII, soplex, and povray are not run
because they use exceptions, which STABILIZER does not yet sup-
port. We plan to add support for exceptions by rewriting LLVM’s ex-
ception handling intrinsics to invoke STABILIZER-specific runtime
support for exceptions. STABILIZER is also evaluated on all Fortran
benchmarks, except for bwaves, calculix, gamess, GemsFDTD,
and tonto. These benchmarks fail to build on our system when
using gfortran with the LLVM plugin.

5.1 Normality
We evaluate the claim that STABILIZER results in normally dis-
tributed execution times across the entire benchmark suite. Using
the Shapiro-Wilk test for normality, we can check if the execution
times of each benchmark are normally distributed with and with-
out STABILIZER. Every benchmark is run 30 times each with and
without STABILIZER’s re-randomization enabled.

Table 1 shows the p-values for the Shapiro-Wilk test of nor-
mality. Without re-randomization, five benchmarks exhibit execu-
tion times that are not normally distributed with 95% confidence:
astar, cactusADM, gromacs, h264ref, and perlbench. With re-
randomization, all of these benchmarks exhibit normally distributed
execution times except for cactusADM. The hmmer benchmark has
normally distributed execution times with one-time randomization,
but not with re-randomization. This anomaly may be due to hmmer’s
use of alignment-sensitive floating point operations.

Figure 5 shows the distributions of all 18 benchmarks on QQ
(quantile-quantile) plots. QQ plots are useful for visualizing how
close a set of samples is to a reference distribution (Gaussian in this
case). Each data point is placed at the intersection of the sample and
reference distributions’ quantiles. Points will fall along a straight
line if the observed values come from the reference distribution
family.

A steeper slope on the QQ plot indicates a greater variance.
We test for homogeneity of variance using the Brown-Forsythe
test [11]. For eight benchmarks, astar, gcc, gobmk, gromacs,
h264ref, perlbench, sjeng, and zeusmp, re-randomization leads
to a statistically significant decrease in variance. This decrease is the
result of regression to the mean. Observing a very high execution
time with re-randomization would require selecting many more
“unlucky” than “lucky” layouts. In two cases, cactusADM and mcf,
re-randomization yields a small but statistically significant increase
in variance. The p-values for the Brown-Forsythe test are shown in
Table 1.

Result: STABILIZER nearly always imposes a Gaussian distribu-
tion on execution time, and tends to reduce variance.

5.2 Efficiency
Figure 6 shows the overhead of STABILIZER relative to unrandom-
ized execution. Every benchmark is run 30 times in each configura-
tion. With all randomizations enabled, STABILIZER adds a median
overhead of 6.7%.

Most of STABILIZER’s overhead can be attributed to reduced
locality. Code and stack randomization both add additional logic to
function invocation, but this has limited impact on execution time.
Programs run with STABILIZER use a larger portion of the virtual
address space, putting additional pressure on the TLB.

With all randomizations enabled, STABILIZER adds more than
30% overhead for just four benchmarks. For gobmk, gcc, and
perlbench, the majority of STABILIZER’s overhead comes from
stack randomization. These three benchmarks all have a large
number of functions, each with its own stack pad table (described in
Section 3).

Shapiro-Wilk Brown-Forsythe
Benchmark Randomized Re-randomized

astar 0.000 0.194 0.001
bzip2 0.789 0.143 0.078

cactusADM 0.003 0.003 0.001
gcc 0.420 0.717 0.013
gobmk 0.072 0.563 0.000

gromacs 0.015 0.550 0.022
h264ref 0.003 0.183 0.002
hmmer 0.552 0.016 0.982
lbm 0.240 0.530 0.161

libquantum 0.437 0.115 0.397
mcf 0.991 0.598 0.027
milc 0.367 0.578 0.554
namd 0.254 0.691 0.610

perlbench 0.036 0.188 0.047
sjeng 0.240 0.373 0.000

sphinx3 0.727 0.842 0.203
wrf 0.856 0.935 0.554

zeusmp 0.342 0.815 0.000

Table 1. P-values for the Shapiro-Wilk test of normality and the Brown-
Forsythe test for homogeneity of variance. A p-value less that α = 0.05 is
sufficient to reject the null hypothesis (indicated in bold). Shapiro-Wilk tests
the null hypothesis that the data are drawn from a normal distribution. Brown-
Forsythe tests whether the one-time randomization and re-randomization
samples are drawn from distributions with the same variance. Boldface
indicates statistically significant non-normal execution times and unequal
variances, respectively. Section 5.1 explores these results further.
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18 benchmarks show a statistically significant change with -O2, and 9 of 18 show a significant change with -O3. In three cases for -O2 and three for -O3, the
statistically significant change is a performance degradation. Despite per-benchmark significance results, the -O3 data do not show significance across the entire
suite of benchmarks, and -O2 optimizations are only significant at a 90% level (Section 6.1).

The increased working set size increases cache pressure. If
STABILIZER allowed functions to share stack pad tables, this
overhead could be reduced. STABILIZER’s heap randomization adds
most of the overhead to cactusADM. This benchmark allocates a
large number of arrays on the heap, and rounding up to power of
two size classes leads to a large amount of wasted heap space.

STABILIZER’s overhead does not affect its validity as a system
for measuring the impact of performance optimizations. If an
optimization has a statistically significant impact, it will shift
the mean execution time over all possible layouts. The overhead
added by STABILIZER also shifts this mean, but applies equally
to both versions of the program. STABILIZER imposes a Gaussian
distribution on execution times, which enables the detection of
smaller effects than an evaluation of execution times with unknown
distribution.

Performance Improvements
In four cases, STABILIZER (slightly) improves performance. astar,
hmmer, mcf, and namd all run faster with code randomization
enabled. We attribute this to the elimination of branch aliasing [15].
It is highly unlikely that a significant fraction of a run’s random
code layouts would exhibit branch aliasing problems. It is similarly
unlikely that a significant fraction of random layouts would result in
large performance improvements. The small gains with STABILIZER

suggest the default program layout is slightly worse than the median
layout for these benchmarks.

6. Sound Performance Analysis
The goal of STABILIZER is to enable statistically sound performance
evaluation. We demonstrate STABILIZER’s use here by evaluating
the effectiveness of LLVM’s -O3 and -O2 optimization levels.
Figure 7 shows the speedup of -O2 and -O3, where speedup of
-O3 is defined as:

time-O2

time-O3
LLVM’s -O2 optimizations include basic-block level common

subexpression elimination, while -O3 adds argument promotion,
global dead code elimination, increases the amount of inlining, and
adds global (procedure-wide) common subexpression elimination.

Execution times for all but three benchmarks are normally dis-
tributed when run with STABILIZER. These three benchmarks,
hmmer, wrf, and zeusmp, have p-values below α = 0.05 for the
Shapiro-Wilk test. For all benchmarks with normally distributed ex-
ecution times, we apply the two-sample t-test to determine whether

-O3 provides a statistically significant performance improvement
over -O2, and likewise for -O2 over -O1. The three non-normal
benchmarks use the Wilcoxon signed-rank test, a non-parametric
equivalent to the t-test [32].

At a 95% confidence level, we find that there is a statistically
significant difference between -O2 and -O1 for 17 of 18 benchmarks.
There is a significant difference between -O3 and -O2 for 9 of 18
benchmarks. While this result is promising, it does come with a
caveat: bzip2, libquantum, and milc show a statistically signifi-
cant increase in execution time with -O2 optimizations. The bzip2,
gobmk, and zeusmp benchmarks show a statistically significant per-
formance degradation with -O3.

6.1 Analysis of Variance
Evaluating optimizations with pairwise t-tests is error prone. This
methodology runs a high risk of erroneously rejecting the null hy-
pothesis (a type-I error). The parameter α = 0.05 is the probability
of observing the measured speedup, given that the optimization actu-
ally has no effect. Figure 7 shows the results for 36 hypothesis tests,
each with a 5% risk of a false positive. We expect 36∗0.05 = 1.8 of
these tests to show that an optimization had a statistically significant
impact when in reality it did not.

Analysis of variance (ANOVA) allows us to test the significance
of each optimization level over all benchmarks simultaneously.
ANOVA relies on a normal assumption, but has been show to be
robust to modest deviations from normality [11]. We run ANOVA
with the same 18 benchmarks to test the significance of -O2 over
-O1 and -O3 over -O2.

ANOVA takes the total variance in execution times and breaks it
down by source: the fraction due to differences between benchmarks,
the impact of optimizations, interactions between the independent
factors, and random variation between runs. Differences between
benchmarks should not be included in the final result. We perform
a one-way analysis of variance within subjects to ensure execution
times are only compared between runs of the same benchmark.

For the speedup of -O2, the results show an F-value of 3.235 for
one degree of freedom (the choice between -O1 and -O2). The
F-value is drawn from the F distribution [11]. The cumulative
probability of observing any value drawn from F (1) > 3.235 =
0.0898 is the p-value for this test. The results show that -O2
optimizations are significant at a 90% confidence level, but not
at the 95% level. The F-value for -O3 is 1.335, again for one
degree of freedom. This gives a p-value of 0.264. We fail to reject
the null hypothesis and must conclude that compared to -O2, -O3
optimizations are not statistically significant.
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Base Randomization Fine-Grain Randomization Implementation
System code stack heap code stack heap recompilation dynamic re-randomization
Address Space Layout Randomization [20, 29] � � �
Transparent Runtime Randomization [35] � � �
Address Space Layout Permutation [16] � � � � �
Address Obfuscation [5] � � � � � � �*
Dynamic Offset Randomization [34] � �* � �
Bhatkar et al. [6] � � � � � � �
DieHard [3] � � � �
STABILIZER � � � � � � � � �

Table 2. Prior work in layout randomization includes varying degrees of support for the randomizations implemented in STABILIZER. The
features supported by each project are marked by a checkmark. Asterisks indicate limited support for the corresponding randomization.

7. Related Work
Randomization for Security. Nearly all prior work in layout
randomization has focused on security concerns. Randomizing the
addresses of program elements makes it difficult for attackers to
reliably trigger exploits. Table 2 gives an overview of prior work in
program layout randomization.

The earliest implementations of layout randomization, Address
Space Layout Randomization (ASLR) and PaX, relocate the heap,
stack, and shared libraries in their entirety [20, 29]. Building
on this work, Transparent Runtime Randomization (TRR) and
Address Space Layout permutation (ASLP) have added support
for randomization of code or code elements (like the global offset
table) [16, 35]. Unlike STABILIZER, these systems relocate entire
program segments.

Fine-grained randomization has been implemented in a limited
form in the Address Obfuscation and Dynamic Offset Randomiza-
tion projects, and by Bhatkar, Sekar, and DuVarney [5, 6, 34]. These
systems combine coarse-grained randomization at load time with
finer granularity randomizations in some sections. These systems
do not re-randomize programs during execution, and do not apply
fine-grained randomization to every program segment. STABILIZER

randomizes code and data at a fine granularity, and re-randomizes
during execution.

Heap Randomization. DieHard uses heap randomization to pre-
vent memory errors [3]. Placing heap objects randomly makes it
unlikely that use after free and out of bounds accesses will corrupt
live heap data. DieHarder builds on this to provide probabilistic secu-
rity guarantees [23]. STABILIZER can be configured to use DieHard
as its substrate, although this can lead to substantial overhead.

Predictable Performance. Quicksort is a classic example of using
randomization for predictable performance [14]. Random pivot
selection drastically reduces the likelihood of encountering a worst-
case input, and converts a O(n2) algorithm into one that runs with
O(n log n) in practice.

Randomization has also been applied to probabilistically analyz-
able real-time systems. Quiñones et al. show that random cache re-
placement enables probabilistic worst-case execution time analysis,
while maintaining good performance. This probabilistic analysis is
a significant improvement over conventional hard real-time systems,
where analysis of cache behavior relies on complete information.

Performance Evaluation. Mytkowicz et al. observe that environ-
mental sensitivities can degrade program performance by as much
as 300% [22]. While Mytkowicz et al. show that layout can dramat-
ically impact performance, their proposed solution, experimental
setup randomization (the exploration of the space of different link
orders and environment variable sizes), is substantially different.

Experimental setup randomization requires far more runs than
STABILIZER, and cannot eliminate bias as effectively. For example,
varying link orders only changes inter-module function placement,
so that a change of a function’s size still affects the placement of all

functions after it. STABILIZER instead randomizes the placement of
every function independently. Similarly, varying environment size
changes the base of the process stack, but not the distance between
stack frames.

In addition, any unrandomized factor in experimental setup
randomization, such as a different shared library version, could have
a dramatic effect on layout. STABILIZER does not require a priori
identification of all factors. Its use of dynamic re-randomization also
leads to normally distributed execution times, enabling the use of
parametric hypothesis tests.

Alameldeen and Wood find similar sensitivities in processor
simulators, which they also address with the addition of non-
determinism [1]. Tsafrir, Ouaknine, and Feitelson report dramatic
environmental sensitivities in job scheduling, which they address
with a technique they call “input shaking” [30, 31]. Georges et al.
propose rigorous techniques for Java performance evaluation [12].
While prior techniques for performance evaluation require many
runs over a wide range of (possibly unknown) environmental factors,
STABILIZER enables efficient and statistically sound performance
evaluation by breaking the dependence between experimental setup
and program layout.

8. Future Work
We plan to extend STABILIZER to randomize code at finer granu-
larity. Instead of relocating functions, STABILIZER could relocate
individual basic blocks at runtime. This finer granularity would
allow for branch-sense randomization. Randomly relocated basic
blocks can appear in any order, and STABILIZER could randomly
swap the fall-through and target blocks during execution. This ap-
proach would effectively randomize the history portion of the branch
predictor table, eliminating another potential source of bias.

STABILIZER is useful for performance evaluation, but its ability
to dynamically change layout could also be used to improve program
performance. Searching for optimal layouts a priori would be
intractable: the number of possible permutations of all functions
grows at the rate of O(N !), without accounting for space between
functions. However, sampling with performance counters could
be used to detect layout-related performance problems like cache
misses and branch mispredictions. When STABILIZER detects these
problems, it could trigger a complete or partial re-randomization of
layout to try to eliminate the source of the performance issue.

9. Conclusion
Researchers and software developers require effective performance
evaluation to guide work in compiler optimizations, runtime li-
braries, and large applications. Automatic performance regression
tests are now commonplace. Standard practice measures execution
times before and after applying changes, but modern processor archi-
tectures make this approach unsound. Small changes to a program
or its execution environment can perturb its layout, which affects
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caches and branch predictors. Two versions of a program, regardless
of the number of runs, are only two samples from the distribution
over possible layouts. Statistical techniques for comparing distribu-
tions require more samples, but randomizing layout over many runs
may be prohibitively slow.

This paper presents STABILIZER, a system that enables the use of
the powerful statistical techniques required for sound performance
evaluation on modern architectures. STABILIZER forces executions
to sample the space of memory configurations by efficiently and
repeatedly randomizing the placement of code, stack, and heap
objects at runtime. Every run with STABILIZER consists of many
independent and identically distributed (i.i.d.) intervals of random
layout. Total execution time (the sum over these intervals) follows
a Gaussian distribution by virtue of the Central Limit Theorem.
STABILIZER thus enables the use of parametric statistical tests
like ANOVA. We demonstrate STABILIZER’s efficiency (< 7%
median overhead) and its effectiveness by evaluating the impact of
LLVM’s optimizations on the SPEC CPU2006 benchmark suite. We
find that the performance impact of -O3 over -O2 optimizations is
indistinguishable from random noise.

We encourage researchers to download STABILIZER to use
it as a basis for sound performance evaluation: it is available at
http://www.stabilizer-tool.org.
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